Precision XY Motion Platform

FEATURES

- Compact Low-Profile Design
- 150 mm XY Trave
- Zero backlash, precision ground
ball screws
- Optical limit switches
- High resolution linear encoder
- Brushless servo motor drive
- Crossed Roller Bearings

The CXY-BS series stages are designed for a variety of applications. This compact low profile ball screw stage is built for high duty cycles and long life and can attain high velocities for factory automation and semiconductor processing equipment. The CXY series offers extraordinary levels of orthogonality and parallelism resulting in high accuracy for combined axis motion. Crossed roller bearings and precision ground ball screws offer extremly smooth operation and velocity control. The XY stage can operate in any orientation and has optional brakes for added saftey.

Product Specifications

Encoder Output	A quad B , index
Force X / Y, Continuous (N)	165
Force X/Y, Peak (N)	330
Force Z (N)	400
Flatness ($\mu \mathrm{m}$)	4
Height (mm)	66
Length (mm)	347
Limit Switches	Yes
Linear Accuracy, Calibrated ($\mu \mathrm{m}$)	1^{*}
Linear Accuracy, Mechanical ($\mu \mathrm{m}$)	6
Linear Encoder Resolution ($\mu \mathrm{m}$)	0.1
Linear Repeatability ($\mu \mathrm{m}$)	0.5
Linear Velocity (mm/s)	140
Moment X (N.m)	110
Moment Y ($\mathrm{N} \cdot \mathrm{m}$)	110
Moment Z ($\mathrm{N} \cdot \mathrm{m}$)	75
Moving Mass X (kg)	9.08
Moving Mass Y (kg)	3.59
Orthogonality (arc-sec)	6
Pitch + /- (arc-sec)	10
Screw Lead (mm)	2
Stage Mass (kg)	13.57
Straigtness ($\mu \mathrm{m}$)	4
Width (mm)	309
Yaw +/- (arc-sec)	4
*Subject to control configuration	

LOAD DIRECTIONS

Part Number Description

CXY	CXY Series
C	No Aperture
150	150 mm Travel
BS	Ball Screw Drive
A	Brushless Servo Motor
M	$0.1 \mu \mathrm{~m}$ Linear SS Scale
P	High Precision
0	No Additional Options
00	Standard Product (Call for custom)

Feedback Connector (DSUB26HD MALE)	
PIN	NAME
1	+5 Vdc
2	A+
3	B+
4	Z+
5	LIM +
6	${ }^{*}$
7	$*$
8	$*$
9	$*$
10	A-
11	B-
12	Z-
13	LIM-
14	$*$
15	$*$
16	$*$
17	$*$
18	GND
19	HALL A
20	HALL B
21	HALL C
22	$*$
23	$*$
24	$*$
25	
26	
Reserved	

Motor Connector (DSUB9 MALE)	
PIN	NAME
1	PE
2	*
3	*
4	*
5	*
6	PHASE A
7	PHASE B
8	PHASE C
9	*
*Reserved	

CXY-C-150-BS-A-M-P-0-00

Motor Specifications	
Motor Type	3 phase brushless DC
BEMF Output (V/Krpm)	2.57
Electrical Time Constant (msec)	0.38
Bus Voltage (Vdc)	24 nominal (100 max)
Max Continuous Current (Apk)	3.36
Motor Force Constant (Nm/Apk)	0.0216
Peak Current (Apk)	6.73
Pin to Pin Inductance (mH)	0.55
Pin to Pin Resistance (ohm)	1.51
Poles Per Revolution	6

Feedback Specifications		
Supply Voltage (Vdc)	$5.0 \pm 10 \%$	
Supply Current (mA)	250	
Encoder Feedback	Yes	
Encoder Type	Incremental	
Encoder Output	Square Wave Quadrature, RS-422 compatible,	
A,B,Z, Differential Pair		
Encoder Resolution	10000 cts/mm	
Hall Switches	Yes	
Hall Switch Output Type	Open-collector, no internal pullup resistor	
Hall Switch max current (mA)	-20	
Limit Switches	Yes	
Limits Switch Output Type	Open-collector, no internal pullup resistor	
Limit Switch Output current (mA)	-20	

The encoder will output one index pulse near center travel. This pulse is highly repeatable and can be used upon power-up to find an absolute position to use for further measurements.

Two limit switches are provided at the ends of travel. The limit switches will be pulled low throughout the travel range of the stage. The output will swing to high-impedance at the end of travel and remain high-impedance until the mechanical limit of the stage is reached.

